ARTIFICIAL & NATURAL INTELLIGENCE TOULOUSE INSTITUTE

TrUstworthy Planning and scheduling with Learning and ExplanationS

Tuple TRUSTWORTHY AI

Project Overview

Objective: Build Trustworthy Planning & Scheduling Systems

Planning & Scheduling: key problem in Al and autonomous systems

- Decision making over time (choice of actions and their timing)
- Objectives (e.g. achieving a goal, minimizing a cost)
 Constraints (e.g. time, resources)

Widespread application in industrial and governance sectors

Example: Aircraft Manufacturing

Academic

Partners

KU Leuven

Univ Saarland

Univ Bologna

CVUT Prague

Czech Technical Universiti In Prague

Existing Approaches Are Not Trustworthy

• Model-based (reasoning) methods safe 🗸 explainable 🗸 stable 🗸 adaptable 🗆 scalable 🛛

Data-driven (learning) methods • explainable 🗌 stable 🗆 adaptable 🖌 scalable 🖌 safe

0	16	Him							ш	1 1	te
More advanced params symmbreak_on_used	12										
False	10										
hint_lexicographic	8								11		
False	÷.	10.11									
					101 0				1	Ú. 1	
Solve completed with success	4	Jan 1	Jan 2	Jan 3	an 4	Jan 5	Jan 6	Jan 7		B nEL	
Solver finished best solution kpis	-	2024									
* {											
"nb_teams":8											
"makespan" : "458" "workload dispersion" :	165										
"nb_violations":0	100										

- Thousands of activities to schedule and assign to resources
- Constraints: precedence, workforce and machine availability, skills...
- Objectives: costs, completion time, quality...
- Many sources of uncertainty: delays, equipment failures ...

Highlight 2: Learning planning heuristics

Supervised learning of heuristics to guide search

- architectures exploit the structure of **symbolic** planning representations ⇒ data **frugal**, **generalises** to larger problems, **robust** to domain changes
- **GOOSE** family of planners

New family of methods: decision-focused learning

DFL survey [Mandi et al, '24]

	Objective Function	Constraint Functions	Decision Variables	CO Solver	
Analytical Differentiation of Optimization Mappings	Strictly Convex	Convex	Continuous	Primal- Dual Solver	
Analytical Smoothing of Optimization Mappings	Linear	Linear	Continuous/ Discrete	Primal- Dual Solver	
Smoothing by Random Perturbations	Linear in the Predicted Parameter	Not limited to specific form	Continuous/ Discrete	Solver agnostic	
Differentiation of Surrogate Loss Functions	Linear in the Predicted Parameter	Not limited to specific form	Continuous/ Discrete	Solver agnostic	

https://github.com/PredOpt/predopt-benchmarks

Example use case: Energy Production

Results

International Planning Competition learning track

GOOSE-Rank: forget heuristics - learn to rank states!

- Greedy Best First Search: ranking states is sufficient and more flexible
- optimal ranking: rank states on optimal path as better than those off it
- pairwise direct ranking enforces transitivity and gets more data for free!
- combines with and improves a NN regression model (e.g GOOSE GNNs)

WL-GOOSE: forget GNNs, use classical ML!

Key issues with GNNs

Management Under Uncertainty

- **Given**: • Energy supply & demand • Price and demand predictions • Information on how uncertainty might unfold
- Compute: Routing/generation decisions over time with minimal cost • Satisfying all demands • Robust w.r.t.uncertainty

' Université

de Toulouse

Result: Comparable quality w.r.t. Monte-Carlo approximate methods but ~100x faster at inference time

Beluga Logistics Planning (Airbus)

- training: 308 instances 1-3 flights, 2-23 parts, 2-8 racks
- testing: 3808 instances 1-15 flights, 3-64 parts, 2-19 racks

- **slow** at inference time
- expressive power limited by Weisfeiler-Leman (WL) algorithm
- incomplete test for graph non-isomorphism
- Indistinguishable states: GNNs cannot learn certain heuristics

Algorithm 1: WL algorithm $\begin{array}{l} \stackrel{0}{\overset{(v)}{\leftarrow}} c(v), \forall v \in V \\ \text{or } j = 1, \dots, h \text{ do for } v \in V \text{ do} \\ c^{j}(v) \leftarrow \text{hash} \left(c^{j-1}(v), \{\!\!\{ c^{j-1}(u) \mid u \in \mathcal{N}(v) \}\!\!\} \right) \end{array}$ 4 return $\bigcup_{j=0,...,h} \{\!\!\{ c^j(v) \mid v \in V \}\!\!\}$

Alternative: classical ML + graph features

- **features**: frequency of colors produced by the WL algorithm
- can use any **classical ML technique** (SVM, GP)
- same expressiveness as GNNs
- 100-1000x faster training and inference

NNIT

Point of contact (project lead): Sylvie THIEBAUX, <u>sylvie.thiebaux@laas.fr</u>

